
Sharding and HTTP/2 Connection Reuse Revisited:
Why Are There Still Redundant Connections?

Constantin Sander, Leo Blöcher, Klaus Wehrle, Jan Rüth
Communication and Distributed Systems, RWTH Aachen University, Aachen, Germany

{sander,bloecher,wehrle,rueth}@comsys.rwth-aachen.de

ABSTRACT
HTTP/2 and HTTP/3 avoid concurrent connections but instead
multiplex requests over a single connection. Besides enabling new
features, this reduces overhead and enables fair bandwidth sharing.
Redundant connections should hence be a story of the past with
HTTP/2. However, they still exist, potentially hindering innovation
and performance. Thus, we measure their spread and analyze their
causes in this paper. We find that 36 % - 72 % of the 6.24 M HTTP
Archive and 78 % of the Alexa Top 100k websites cause Chromium-
based webbrowsers to open superfluous connections. We mainly
attribute these to domain sharding, despite HTTP/2 efforts to revert
it, and DNS load balancing, but also the Fetch Standard.

CCS CONCEPTS
• Networks → Network measurement; Application layer pro-
tocols; Network architectures.

KEYWORDS
HTTP/2, Connection Reuse, Domain Sharding, Fetch Standard
ACM Reference Format:
Constantin Sander, Leo Blöcher, Klaus Wehrle, Jan Rüth. 2021. Sharding
and HTTP/2 Connection Reuse Revisited: Why Are There Still Redundant
Connections?. In ACM Internet Measurement Conference (IMC ’21), November
2–4, 2021, Virtual Event, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3487552.3487832

1 INTRODUCTION
Internet standards of the past decade, such as HTTP/2 [2] and
HTTP/3 [3], have paved the Web’s way to use a single transport
connection. While HTTP/1.1 needs multiple concurrent connec-
tions to achieve parallelism, its successors can multiplex content
over a single connection. A single connection has many advan-
tages on paper, e.g., connection-establishment overheads such as
the 3-way-handshake + additional TLS handshakes or growing the
congestion window (slow start) diminish. Further, it decreases re-
source use as fewer connections have to be maintained, especially
at content-providers with many users. But focussing on a single
connection also offered further innovation potential within HTTP:
header compression and resource prioritization became viable, and
new features such as server push could be tested. Research found
that these new features can significantly improve web performance
when used correctly [25, 27, 28]. Here, multiple connections can

IMC ’21, November 2–4, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM Internet
Measurement Conference (IMC ’21), November 2–4, 2021, Virtual Event, USA, https:
//doi.org/10.1145/3487552.3487832.

even degrade effectiveness as, for instance, prioritization does not
span across connections and priorities lose their meaning.

However, simply updating a webserver to use the most recent
standard does not revert previous performance tricks. E.g., domain
sharding, i.e., spreading content over various subdomains, was seen
as a valid way to gain more connections and parallelism in the
age of HTTP/1.1. The structures created by these practices are still
present [25], as even CDNs do not reduce redundancy if domain
sharding is structurally still enforced by spreading resources over
domains. A recognized problem, the HTTP/2 and HTTP/3 stan-
dards1 try to revert domain sharding with their Connection Reuse
mechanism when a subdomain resolves to an IP for which a connec-
tion is already established. Nonetheless, a 2016 study [13] showed
that browsers still tended to open multiple HTTP/2 connections to
the same domain. Roughly one-third of all flows were duplicates
although HTTP/2 should use a single connection [2, Section 9.1] –
the root causes remained vague.

In this work, we revisit the occurrence of redundant connections
w.r.t. HTTP/2 to discover if the problem persists and, more impor-
tantly, identify why Connection Reuse is ineffective and what can
be done for rectification. We do not solely focus on domain sharding
but generally look at connections that could have been avoided.
To this end, our study is two-fold: We analyze data provided in
the HTTP Archive [16] (visiting millions of websites per month
to collect web statistics) to get an idea of the scale of redundant
connections and further perform additional measurements on the
Alexa Top 100k to pinpoint and attribute redundant connections.
Specifically, our paper contributes and finds the following:
• We elaborate why Connection Reuse, a seemingly simple reversal

of domain sharding, can miss its target in practice.
• We present and apply a method to quantify the causes of redun-

dant connections of Chromium browsers.
• Redundancy still persists; 2.26 M to 4.49 M of the 6.24 M HTTP

Archive and 77.88 k of Alexa Top 100k websites are affected.
• DNS load-balancing is the leading cause, then privacy-driven

Web standards and domain sharding with separate certificates.
• We find that only few parties cause the majority of redundancy.

2 MULTIPLE CONNECTIONS AND HTTP
Modern web pages consist of a multitude of resources [11]. However,
HTTP/1.1 [8] uses a single TCP connection to send one resource
after another. I.e., a delayed resource, e.g., due to database accesses,
can delay subsequent resources hindering the rendering process.

1It is easier to include a workaround in a standard that is eventually implemented than
to get operators to change their practices.

1

https://doi.org/10.1145/3487552.3487832
https://doi.org/10.1145/3487552.3487832
https://doi.org/10.1145/3487552.3487832
https://doi.org/10.1145/3487552.3487832

IMC ’21, November 2–4, 2021, Virtual Event, USA Sander et al.

2.1 HTTP/1 – Parallel Connections
Hence, browsers open six or more parallel TCP connections [10, 13,
27] to achieve more parallelism with HTTP/1.1. Website operators
employed domain sharding [10] to stretch these limits by spreading
resources over more domains causing additional connections, e.g.,
images can be moved to a subdomain (img.example.tld). How-
ever, each connection has its costs. For instance, all connections
have to be maintained on client- and server-side. While negligible
for clients, the overhead for servers maintaining several thousand
connections can easily build up. Similarly, latency penalties occur,
e.g., with TCP, 1 RTT is spent on connection establishment, increas-
ing to 2 or 3 RTTs when TLS is added. Additionally, congestion
control (CC) slow starts with every new connection, which adds
several RTTs of latency until the full throughput can be achieved.

2.2 HTTP/2 and HTTP/3 – One Connection
As latency is essential for web performance, HTTP/2 [2] and its
successor HTTP/3 [3] follow the goal to avoid new connections.
They use multiple streams that are multiplexed over a single con-
nection to allow for parallel transfers of resources. For this, HTTP/2
implements stream semantics on top of TCP, while HTTP/3 uses
the novel transport QUIC and its integrated streams. This enables
better efficiency on server-side, but also innovations such as header
compression and fine-grained scheduling of data – to prioritize
important resources over less critical ones – on protocol-level.

2.2.1 Effects of Redundancy. These features were developed as-
suming that the Web would use only a single connection. When
data remains split across connections, overheads are not saved, and
prioritization and header compression cannot boost performance.

In that regard, Bocchi et al. [4] find that fewer connections usu-
ally increase the QoE with HTTP/2 in real-world settings. Wang et
al. [26] find generally worse page load times (PLTs) with multiple
connections for HTTP/2’s predecessor SPDY. However, they find
improved PLTs for high packet loss. Similarly, Goel et al. [9] find
that multiple connections can worsen HTTP/2’s PLTs for many
small objects, but improve them for few, large objects – especially
when loss is high – which they ascribe to growing the cumula-
tive congestion window (ccwnd) faster. While not discussed by
the authors, this, however, allocates more than a fair bandwidth
share compared to a single connection. Manzoor et al. [14] also find
multiple connections to be beneficial for HTTP/2 under high loss.
They additionally attribute this to better exploitation of ECMP load-
balancing and TCP’s head-of-line (HOL) blocking during packet
loss, pausing all HTTP/2 streams. However, the authors also find
that Google QUIC (predecessor of IETF QUIC and HTTP/3) alle-
viates the HOL issues and surpasses HTTP/2 in many scenarios.
Marx et al. [15] also find HTTP/2 to benefit from multiple connec-
tions and higher ccwnds for large resources. Nevertheless, they see
that HTTP/2’s PLTs for many small resources worsen when using
multiple connections and that header compression is less effective
as the compression dictionary has to be bootstrapped again.

We argue that with QUIC and HTTP/3, allowing easily tunable
CC and removing suffering from HOL blocking, a single connection
might be the desired state in all scenarios to best exploit its features
and performance. Moreover, fewer connections mean fewer com-
peting CCs and potentially better fairness. Also, content-providers

probably benefit from fewer connections increasing the efficiency
of their servers due to reduced connection maintenance overhead.

2.2.2 Connection Reuse. Nevertheless, techniques such as domain
sharding intend to open multiple connections in all cases, and
Varvello et al. [25] find that websites switching to HTTP/2 do not
adapt but still place resources across domains.

HTTP/2 [2] hence specifies Connection Reuse to revert domain
sharding: Requests for domain D may be sent over an existing
connection A if D resolves to the same destination IP that A is using
(+ matching ports) and if A’s TLS certificate includes D (e.g., via
Subject Alternative Name, SAN). I.e., an image residing on the img.
subdomain-shard hosted on the same server as the root document
can reuse an existing connection. HTTP/3 inherits this mechanism.

However, it is unknown whether this mechanism is effective.
Varvello et al. [25] find fewer connections when switching to HTTP/2
but also that domain sharding is still used. They do not analyze
whether these domains were correctly reused or whether more
connections could have been avoided. On the other hand, Manzoor
et al. [13] find multiple HTTP/2 connections for the same domain
(in total 33%), i.e., connection reuse seems to be ineffective here.
Later, the authors note that a fixed Chromium bug introduced this
behavior [14]. However, we still see redundant connections for
which the precise reasons and the extent are unknown.
We thus recognize a need to again look at Connection Reuse, do-
main sharding and why redundant connections still exist in the real
world. Hence, we devise a methodology to analyze redundant con-
nections but we will first present different combinations of website
and network structure as well as browser behavior that we have
identified to lead to redundant connections.

3 CAUSES OF MULTIPLE CONNECTIONS
Connection Reuse [2] depends on two factors: the destination IP
and the domain. If an already opened connection uses the same
destination IP as a new request, the connection may be reused if,
additionally, its certificate includes the domain. Thus, a browser
opening connections for a given domain and IP can have different
reasons, which we visualize in Figure 1 and present in the following.
Unknown 3𝑟𝑑 Party Requests: If the IP differs and open connec-
tions do not include the new domain in their certificates, as for
third party resources, where the third party has not been contacted
before, a new connection has to be opened. We argue these cannot
be avoided in the HTTP context, but would require a redesign of a
website such that we ignore them in the following.
Different Certificates (CERT): Also, if the IP is the same, the do-
main might not be included in previous certificates. I.e., if operators
use domain sharding and different certificates for their domains,
HTTP/2 still opens new connections.
Different IPs (IP): Vice versa, the domain can be included in pre-
vious certificates, but the request’s destination IP differs. I.e., really
distributed resources, but also domain sharding with one certificate
and differing IPs in the DNS can still open new connections.
Fetch Standard (CRED): Even if both factors match, browsers can
refuse Connection Reuse when following the WHATWG Fetch Stan-
dard [24]. Depending, e.g., on a request’s tainting type (changes,
e.g., for cross-origin resource sharing / CORS requests such as

2

Sharding and HTTP/2 Connection Reuse Revisited:
Why Are There Still Redundant Connections? IMC ’21, November 2–4, 2021, Virtual Event, USA

Figure 1: Visualization of the four root causes that lead browsers to create a new HTTP/2 connection.

font downloads across domains) and credentials mode, the Fetch
Standard decides whether credentials (such as cookies) should be
included in the request. A browser then only reuses a connection if
its previous requests also included (or vice versa did not include)
credentials (cf. §4.6, §4.7, §2.5 of [24]). Otherwise, the existing con-
nection would be tainted with identifying information, or vice versa,
a new request would be tied to previously used credentials [22]. This
privacy-enhancing measure can, of course, lead to a new connec-
tion to the same IP and SAN-included domain, as is discussed by the
author [22]. While Chromium implements this mechanism [12], its
necessity is discussed [22] and, e.g., Firefox does not follow it [23].
In essence, the discussion in [22] revolves around the privacy effect
of opening a new connection to the same server as identifying in-
formation could also be injected into Ajax request URLs and servers
could also map user identities via, e.g., user IPs such that the actual
privacy improvements are little to non-existing.
Exception: Explicitly Excluded Domains. Additionally, Web
servers can announce no support for a domain via HTTP Status
421 [2] or HTTP ORIGIN Frames [18], disabling connection reuse.

In the following, we present our methodology that allows at-
tributing redundancies to these root causes.

4 METHODOLOGY
To analyze real-world websites for redundant connections w.r.t.
HTTP/2, we rely on Chromium browsers to record their connec-
tions when visiting these websites. We then analyze and classify
the connections accordingly.

4.1 Connection Analysis
For the analysis, we group connections w.r.t. HTTP/2 (in the fol-
lowing also HTTP/2 sessions) by their IP to find causes CERT and
CRED, and, for IP and CRED, group their initially used domain name
and certificate SANs of previous connections. Domains which web
servers explicitly exclude, e.g., via HTTP status 421, are ignored.
Moreover, we intercept the corner case of same-initial-domain re-
quests on different IPs. Otherwise, these would be classified as IP,
but only happen when CRED forbids reuse and multiple IPs are
announced via DNS. We hence mark these cases as CRED.

Inherently, connections can be redundant due to multiple causes.
For example, when we see four successively opened same-IP con-
nections, where #1 and #3 use certificate A and #2 and #4 use B,
we find three redundant connections in total but attribute them at
time of connection establishment to three times type CERT (#2 is
redundant to #1, #3 is redundant to #2, #4 is redundant to #1 and
#3) and two times type CRED (#3 is redundant to #1, #4 to #2).

4.2 Chromium-based Connection Data
To gather the actual session information, we base our analysis
on Chromium / Chrome browsers visiting websites. We focus on
Chrome as it makes up around 2/3 of the browser market share [21].
Additionally, more and more browsers build on Chromium. In total,
we use two different sources: We rely on the HTTP Archive’s [16]
desktop browser crawls from April 2021 (6.24 M websites) and also
use Chromium to visit the Alexa Top 100k of April 20th, 2021.

4.2.1 HTTP Archive. The HTTP Archive [16] crawls the top web-
sites of the Chrome User Experience Reports using Chrome, pro-
viding aggregated statistics and HAR files with detailed page-load
information. For every website, the landing page is loaded 3 times
and the HAR file for the median load time is saved. We parse these
HAR files to identify HTTP/2 requests on the same sessions (by
socket / connection ID) to reconstruct the HTTP/2 session lifecycle.
We ignore HTTP/3 / QUIC requests as these all have socket ID 0, i.e.,
we cannot distinguish between the connections. Moreover, HAR
files only give request-level information, i.e., we can determine the
start time of a connection by the first request but cannot determine
the end time precisely. Hence, we evaluate two cases: One (end-
less), where connections are kept open, and one (immediate), where
connections are closed after the last request. The latter is probably
atypical, as long flows are desired, but we still evaluate it to give a
lower bound, while the former likely overestimates flow durations
and redundancy counts.

4.2.2 Own Measurements. To gather more detailed information,
we complement the HTTP Archive data with additional measure-
ments. We leverage Browsertime [20] to visit the first 100k domains
of the Alexa Top 1M with Chromium 87.0.4280.88. As URLs, we
use the domains in the Alexa list (second level domains and deeper)
preceded with https:// and load every landing page once. We set
a page-load timeout of 300s, do not ignore certificate errors, and
disable QUIC to focus on HTTP/2 and avoid switching between
HTTP/3 and HTTP/2 after observing an alt-svc header. To achieve
reproducibility, we disable Chromium field trials, that would other-
wise randomly enable experimental features or parameterizations.
We then collect Chromium’s NetLog [19] files giving more details
on low-level connection events (e.g., start and end) and stitch these
events together to gather a precise view of the session lifecycle for
analyzing it as described before.
Ethics. Our Chromium measurements are conducted from within
our university’s network on a dedicated IP inside our measurement
subnet. Aiming to minimize impact, we set up a reverse DNS entry
for our IP, hinting at our research context, and provide a website

3

IMC ’21, November 2–4, 2021, Virtual Event, USA Sander et al.

explaining our measurements and how to opt out. Abuse e-mails
are handled correspondingly.

4.3 Limitations
As is typical for measurements, our approach is limited: E.g., providers
blocking our measurements (we provide instructions on our web-
site) can skew results for our vantage point.

Further, we are limited by Chromium’s features: We filter HTTP
status 421 [2] (see Sec. 3) in our measurements to not wrongly clas-
sify these cases as unwanted redundancy but cannot consider ORI-
GIN Frames [18] as these are not implemented in Chromium [17].
I.e., if Web servers signal to reuse a connection for other domains
via this frame, Chromium and in turn our analysis do not react.

Also, we only review landing pages, which can show different
behavior than internal pages [1]. However, the HTTP Archive fo-
cuses solely on landing pages and we aim at a broader overview of
many different websites.

Additionally, cookie accept-banners are not clicked, such that
further requests/connections are potentially missed due to missing
consent. Furthermore, caching effects are ignored as the caches of
the browsers are reset after each visit. Also, as described before, we
ignore HTTP/3 requests in the HTTP Archive, as these requests lack
information to attribute them to individual connections; and in our
measurements to avoid potentially switching between HTTP/2 and
HTTP/3 in between. We would expect that the results are compara-
ble, as the IP and CRED case would occur equally and certificates
are probably also shared for use with HTTP/2 and HTTP/3.

Aside from that, our classification can misclassify redundant
connections: E.g., with newly opened connections, browsers can
switch IPs if multiple IPs are announced. Hence, cause CRED can
be misclassified as IP and CERT as a third party. To specifically
distinguish between CRED and the remaining cases, we conduct
one more measurement described later (cf. Section 5.3.3).

Lastly, we are limited by logging inconsistencies in the HTTP
Archive’s HAR files: We ignored 26.93 k requests with 0 as socket
ID, 1.30 k / 653 requests with missing / inconsistent IPs, 66.75 M
/ 273.49 k / 124.37 k requests with invalid HTTP request methods /
versions / statuses, and 14 requests with an incorrect page reference.
2.22 M requests did not provide SSL certificates, which we use for
SAN extraction, and 11.12 M / 172.73 M requests were HTTP/3 or
HTTP/1 requests. Further, we filtered 9 HAR files with invalid cer-
tificates and one without request IDs. In total, 69.12 M of 401.63 M
HTTP/2 requests and 5.33 M websites were affected by these in-
consistencies, but all the aforementioned information are used by
our analysis to distinguish between HTTP/2 requests and missing
or inconsistent entries can skew our results such that we conser-
vatively exclude these. I.e., our HTTP Archive results potentially
underestimate requests and open connections.

5 RESULTS
In the following, we present our results of the analysis of redundant
HTTP/2 connections. In total, we analyzed 6 242 688 websites of
the HTTP Archive (from April 2021), of which 5 883 212 open at
least one HTTP/2 connection. Moreover, we measured the Alexa
Top 100k websites from April 20th twice in May 2021. The first
time, we followed the Fetch Standard, while the second time, we

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Redundant Connections

0.00
0.25
0.50
0.75
1.00

1
-C

D
F

Si
te

sA
�e

ct
ed HTTP Archive Endless

Alexa Top 100k
Alexa w/o Fetch

Figure 2: Distribution of connections per website

ignore its connection pool credentials flag. We found 18 282 / 18 309
sites to be unreachable for the first / second measurement run. We
review the intersection of websites for comparability, consisting of
81 553 sites that all opened at least one HTTP/2 session. For ease
of readability, we round percentages to integer numbers.

5.1 Websites with Redundant Connections
Depending on the assumed connection duration, we find between
4 493 097 (endless) to 2 263 751 (immediate) of the 5 883 212 HTTP/2
sites (76 % / 38 %) in the HTTP Archive to open at least one redun-
dant connection (also shown in Table 1). From the Alexa Top 100k
measurements, we find 77 878 HTTP/2 sites (95 %) opening redun-
dant connections. If we had assumed endless connection duration
(here we know the exact durations), these numbers do not change a
lot, and we get 77 898 sites with redundant connections. As such, we
find that connections are rather long-lived with a median lifetime
of 122.2s for those connections that close prior to our test ending
(3.5%). Given the small difference here, we continue by regarding
the endless connection case for the HTTP Archive data.

Figure 2 shows the distribution of sites in relation to their re-
dundant connections. For the HTTP Archive (×), around 50 % of all
sites open at least two redundant connections. For the Alexa Top
100k (+), around 50 % open at least six.

We explain the differences, i.e., the higher number of affected
websites and connections for our own measurements, by (1) the
different sets of websites, (2) our measurements including also
requests which we could not analyze in the HTTP Archive (cf.
Section 4.3, e.g., H3 requests making up 2 % of all requests), and (3)
our measurements being conducted from a different vantage point
seeing different load-balancing (cf. Section 5.3.1 + Appendix A.4).
Takeaway. Redundant connections are no story of the past. 76 % of
all HTTP Archive and 95 % of all Alexa Top 100k HTTP/2 websites
open redundant connections. The majority of websites open even more
than one additional connection, potentially hindering HTTP/2 features
and degrading performance.

5.2 Causes of Redundant Connections
To further understand why Connection Reuse is ineffective and
how it can be supported, we next analyze failure reasons in Table 1.
Please note again, the sum of causes can exceed the number of sites
and connections (cf. Sec. 4.1).

We can see in both datasets that differing IPs are the major cause
of missing Connection Reuse. 70 % / 88 % of websites of the HTTP
Archive / Alexa Top 100k with at least one HTTP/2 request are
affected. Connection-wise, 22 % / 28 % of connections are affected.
We later analyze which parties are causing these redundancies.

4

Sharding and HTTP/2 Connection Reuse Revisited:
Why Are There Still Redundant Connections? IMC ’21, November 2–4, 2021, Virtual Event, USA

Ca
us

e

IP Ce
rt

HAR Endless HAR Immediate Alexa Endless Alexa Alexa w/o Fetch

Sites Conns. Sites Conns. Sites Conns. Sites Conns. Sites Conns.

CERT = ≠ 592.95 k 885.40 k 299.71 k 390.56 k 14.17 k 23.98 k 14.13 k 23.63 k 13.88 k 19.30 k
IP ≠ = 4.10 M 13.85 M 1.73 M 4.59 M 71.87 k 460.35 k 71.86 k 458.46 k 71.35 k 416.91 k

CRED = = 2.54 M 3.91 M 1.35 M 1.65 M 64.98 k 138.22 k 64.83 k 132.67 k 0 0

Redund. 4.49 M 17.33 M 2.26 M 6.42 M 77.90 k 579.61 k 77.88 k 574.85 k 71.70 k 429.44 k
Total 5.88 M 63.55 M 5.88 M 63.55 M 81.55 k 1.65 M 81.55 k 1.65 M 81.55 k 1.50 M

Table 1: Counts of occurring causes of redundant connections and affected websites

In contrast, CRED, so Connection Reuse actually working but
browsers following the Fetch standard still opening new connec-
tions, could be easily reduced by few, well-known browser vendors
given that its privacy benefits are dubious [22] and some vendors
already refrain its implementation. It is hence fortunate that it af-
fects the second-most websites (43 % / 79 %). However, it affects far
fewer connections than IP, namely only 6 % / 8 %.

Lastly, the CERT cause, i.e., domain sharding with disjunct certifi-
cates, constitutes a minority with 10 % / 17 % affected websites and
1 % / 1 % affected connections. Similar to IP, it is unclear whether
few or many parties cause this effect.
Takeaway.We can see that most sharded connections are of cause IP,
so domain sharding with divergent IPs, for which it is unclear who
causes / can rectify it. In contrast, roughly half of all websites are
affected by cause CRED, pronouncing the effect of the Fetch Standard,
which can be easily adapted by few browser vendors. Non-overlapping
certificates affect a smaller minority of websites and connections.

5.3 Unraveling Causes for Redundancy
To dive deeper into who is causing redundancy, we next analyze
the causes in detail, beginning with the majority.

5.3.1 IP: SAN included domains with differing IPs. Table 2 shows
the top 4 origins for redundant connections of cause IP with their
potentially reusable connections’ origins.

We can see that the results for the HTTP Archive and our mea-
surements overlap well, but we can, of course, see differences in
their rank of occurrence (↑) and previous connections. We attribute
this to (1) the different websites but also to (2) the differing vantage
points and measurement times and hence differing load which influ-
ences DNS-based load-balancing (We further look into the influence
of DNS-based load-balancing in Appendix A.4).

Mainly, two parties are involved: Google, with Google Analytics
being the top origin in both datasets and domains indicating adver-
tisements, and Facebook. These two parties also occur as top ASs
being involved in IP redundant connections (cf. Appendix A.2)

We checked website samples where the first entry occurred and
found the following behavior: The website downloads a Javascript
from googletagmanager.com (GT), which then downloads a script
from google-analytics.com (GA), loading further resources. Both
domains were included in their respective connection’s certificate
but resolved to slightly different IPs in the same /24 network in our
tests. When requesting the GA script on the GT IP, we received the
same resource, i.e., only a single connection should suffice.

We attribute this effect to unsynchronized DNS load-balancing
of both domains (cf. Appendix A.4). I.e., one domain (seen from our

HTTP Archive Alexa 100k

Origin ↑ Conns. ↑ Conns.

www.google-analytics.com 1 2.25 M 1 52.31 k
prev: www.googletagmanager.com 2.12 M 36.93 k

www.facebook.com 2 1.52 M 4 25.05 k
prev: connect.facebook.net 1.51 M 25.02 k

googleads.g.doubleclick.net 3 615.45 k 6 17.03 k
prev: pagead2.googlesyndication.com 398.41 k 10.19 k

pagead2.googlesyndication.com 4 606.59 k 7 16.99 k
prev: googleads.g.doubleclick.net 418.69 k

www.google.de 12 255 6 2 27.74 k
prev: www.gstatic.com 18.61 k

apis.google.com 82 14.25 k 3 26.10 k
prev: www.gstatic.com 25.91 k

Table 2: Top 4 origins, their redundant connections, rank (↑)
and reusable previous connections for cause IP.

vantage point) is independently load-balanced from another. While
we use our own recursive resolver, load-balanced resolvers with
differing caches can also cause this effect.

We observed a similar result for samples of the Facebook case,
where connect.facebook.net (CFB) and www.facebook.com (WFB)
resolve to slightly different IPs in the same /24 network. A Javascript
is loaded from CFB which initiates loading a 1x1px GIF from WFB.
The script from CFB can also be requested on WFB’s IP, however
not vice-versa. I.e., there seems to be a real resource distribution in
the background in that direction. Nevertheless, ignoring potential
scalability issues, resolving CFB to WFB would reduce redundancy.

The same can be found for hotjar.com (Web Analytics) which
was the next non-Google nor Facebook case (cf. Appendix Table 12).
An exception are the Wordpress statistics tools and extensions of
wp.com (c0.wp.com, stats.wp.com) which point to different IPs in
different /24 networks which are not interchangeable.

We cannot rule out setup mistakes or that content is truly dis-
tributed for the other origins, but load-balancing can similarly
explain those results. Adjusting the domains to point to the same
CNAME to exploit recursive resolver caches to route requests to
the same connection could help here or usage of Anycast CDNs [5]
(which could point each customer to exactly the same IP for ev-
ery of their domains). Alternatively, adoption of the HTTP Origin
Frame [18] could be a sleek way to reroute requests to the same
connection and avoid redundancy.
Takeaway. Major drivers for IP cases are embedded tracking / ad
scripts from Google and Facebook. I.e., only a few parties have to

5

IMC ’21, November 2–4, 2021, Virtual Event, USA Sander et al.

HTTP Archive Alexa 100k

Certificate Issuer ↑ Conns. Domains ↑ Conns. Domains

Let’s Encrypt 1 302.47 k 63.13 k 2 6.43 k 2.36 k
Google Trust Services 2 282.63 k 3.24 k 1 8.75 k 239
DigiCert Inc 3 130.07 k 14.86 k 3 4.04 k 651
Sectigo Limited 4 38.21 k 16.78 k 6 782 345
Cloudflare, Inc. 5 29.70 k 11.55 k 7 760 358
GlobalSign nv-sa 6 22.72 k 2.28 k 4 1.07 k 296
Amazon 8 16.22 k 2.31 k 5 841 347

Table 3: Top 5 certificate issuers w.r.t. redundant connections
of cause CERT and unique domains.

adapt here to reduce the total amount of redundancy significantly.
Exemplarily, we found this effect to be rooted in unsynchronized DNS-
based load-balancing.

5.3.2 CERT: SAN excluded domains with equal IPs. Continuing,
we shed light on CERT cases to see why redundant connections
occur due to disjunct certificates on the same hosts. We begin by
analyzing who issued the certificates; Table 3 shows the top certifi-
cate issuers according to redundant connection and the number of
unique domains. Again, both datasets show a considerable overlap:
Let’s Encrypt (LE) and Google Trust Services (GTS) are the top two
issuers w.r.t. redundancy. Jointly, they form the majority of CERT
cases mirroring their overall market shares either w.r.t. connections
or domains, which we show in detail in Appendix A.1. Hence, for
both issuers, we are interested in the involved parties.

We can see differences in the number of occurring unique do-
mains involved in the redundant connections. GTS occurs for fewer
domains, but with a high volume of connections, i.e., they are heavy-
hitters. In contrast, other issuers do not see such a concentration.
Hence, Google alone could significantly reduce the causes for CERT
redundancy by changing their certificate issuing policies.

Table 4, showing the top domains involved in CERT cases, un-
derlines this hypothesis. Google ad domains of the top 5 make up
65 % / 63 % of connections with certs issued by GTS. While we see
the highest redundancy for an LE-issued domain (accounting for
33 % / 23 % of connections for LE), the distribution is more long-
tailed, i.e., the remaining redundancies are spread across many
more small websites with potentially different operators. Still, LE
is in a position to educate and encourage users, e.g., by nudging
users to merge subdomains configured with certbot [7].
Takeaway. Google Trust Services and Let’s Encrypt issue the major-
ity of disjunct certificates for redundant connections of cause CERT.
Google occurs for few frequently used domains, which are again re-
lated to ads. A single party can make a big change. Let’s Encrypt,
however, occurs for many domains, which are less frequently used.
They potentially involve many small website operators who are prob-
ably not aware of their certificates disallowing reuse. Quick changes
with significant impact are not very likely.

5.3.3 CRED: SAN included domains with equal IPs. The last cause,
CRED, represents connections that could be reused w.r.t. HTTP/2
Connection Reuse, but effectively are not. 6 % / 8 % of connections
are affected by this scenario; 90 % / 60 % of these even connect to
the same domain again.

HTTP Archive Alexa 100k

Domain ↑ Conns. ↑ Conns. Issuer

fast.a.klaviyo.com 1 100.31 k 3 1.46 k LE
prev: static.klaviyo.com 100.04 k 1.46 k

adservice.google.com 2 83.73 k 2 1.56 k GTS
prev: pagead2.googlesyndication.com 43.99 k 487

googleads.g.doubleclick.net 3 52.66 k 6 935 GTS
prev: www.googleadservices.com 51.05 k 692

pagead2.googlesyndication.com 4 48.43 k 1 1.61 k GTS
prev: adservice.google.com 46.82 k 797

images.squarespace-cdn.com 5 45.60 k DCI
prev: static1.squarespace.com 45.57 k

adservice.google.de 505 81 4 1.37 k GTS
prev: pagead2.googlesyndication.com 498

sync.targeting.unrulymedia.com 5 1.33 k DCI
prev: sync.1rx.io 1.33 k

Table 4: Top 5 domains encountered for redundant connec-
tions to the same IPs due to absent SAN entries (CERT).

We suspect the Fetch Standard’s credentials flag (cf. Sec. 3) to
be responsible for this effect, which has the advantage that only a
few browser vendors would have to adapt. To rule out other effects,
Figure 2 and Table 1 show results when patching Chromium to
ignore this flag (internally named privacy_mode [12]).

We can see that the CRED cases vanish completely, but, at first
look counter-intuitively, other causes also reduce. We attribute this
part to our limitations, but mainly to cases with multiple causes
that now disappear. This can also be seen in the absolute difference
of all connections which is closer to the CRED difference in contrast
to ∼40 k vanished IP cases.
Takeaway. The Fetch Standard’s credentials flag is the reason for
redundant connections of cause CRED. Disabling it reduces redun-
dancy by 25 %. As only a few parties have to adapt here, a reduction is
possible. However, a thorough privacy analysis of Fetch should be con-
ducted, especially given that its added value is already discussed [22].

6 CONCLUSION
In this paper, we study when HTTP/2 Connection Reuse is ineffec-
tive and under which circumstances Chromium opens redundant
connections, potentially harming performance.

We find that 36 % - 72 % of the 6.24M HTTP Archive and 78 % of
the Alexa Top 100k websites open redundant connections. These
can be traced back to tracking and advertisements embedding fur-
ther domains with unsynchronized load-balancing, the Fetch Stan-
dard refusing reuse due to (questionable) privacy concerns, and
domain sharding with disjunct certificates.

Redundant connections are thus no history and HTTP/3 using
the same mechanism will also encounter them. However, we see
easy steps for mitigation due to the centricity of the leading causes:
Adaption of the Fetch Standard and load-balancing by advertisers
need small changes by few parties but can meet a large audience.
On the other hand, the merging of certificates for domain sharding
includes many parties with relatively small footprints each and
will probably take much longer as many operators need to be edu-
cated. For future work, we see it as interesting to study the exact
performance impact of our findings.

6

Sharding and HTTP/2 Connection Reuse Revisited:
Why Are There Still Redundant Connections? IMC ’21, November 2–4, 2021, Virtual Event, USA

ACKNOWLEDGMENTS
This work has been funded by the German Research Foundation
DFG under Grant No. WE 2935/20-1 (LEGATO). We thank the
anonymous reviewers and our shepherd Mattijs Jonker for their
valuable comments. We further thank the network operators at
RWTH Aachen University, especially Jens Hektor and Bernd Kohler.

REFERENCES
[1] Waqar Aqeel, Balakrishnan Chandrasekaran, Anja Feldmann, and Bruce M.

Maggs. 2020. On Landing and Internal Web Pages: The Strange Case of Jekyll
and Hyde in Web Performance Measurement. In ACM Internet Measurement
Conference (IMC ’20). https://doi.org/10.1145/3419394.3423626

[2] Mike Belshe, Roberto Peon, and Martin Thomson. 2015. Hypertext Transfer
Protocol Version 2 (HTTP/2). RFC 7540. RFC Editor. http://www.rfc-editor.org/r
fc/rfc7540.txt

[3] Mike Bishop. 2021. Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-Draft
draft-ietf-quic-http-34. IETF Secretariat. https://www.ietf .org/archive/id/draft-
ietf-quic-http-34.txt

[4] Enrico Bocchi, Luca De Cicco, Marco Mellia, and Dario Rossi. 2017. The Web,
the Users, and the MOS: Influence of HTTP/2 on User Experience. In Passive and
Active Measurement (PAM ’17). https://doi.org/10.1007/978-3-319-54328-4_4

[5] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. 2015. Analyzing the Performance of an Anycast CDN. In Proceedings of
the 2015 Internet Measurement Conference (Tokyo, Japan) (IMC ’15). Association
for Computing Machinery, New York, NY, USA, 531–537. https://doi.org/10.114
5/2815675.2815717

[6] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari. 2016. Client Subnet
in DNS Queries. RFC 7871. RFC Editor.

[7] Electronic Frontier Foundation. 2021. Certbot. https://certbot.eff.org/. (Accessed
on 29/09/2021).

[8] Roy T. Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230. RFC Editor. http://www.rfc-editor.org/r
fc/rfc7230.txt

[9] Utkarsh Goel, Moritz Steiner, Mike P. Wittie, Stephen Ludin, and Martin Flack.
2017. Domain-Sharding for Faster HTTP/2 in Lossy Cellular Networks. Technical
Report. https://arxiv.org/abs/1707.05836.

[10] Ilya Grigorik. 2013. High Performance Browser Networking: What every web
developer should know about networking and web performance. O’Reilly Media,
Inc. https://hpbn.co/.

[11] HTTP Archive. 2020. State of the Web - Total Requests per page.
https://httparchive.org/reports/state-of-the-web#reqTotal. (Archived on
17/05/2021).

[12] Paul Jensen. 2017. Google Groups Discussion net-dev@chromium.org: Intent to
implement: Socket Tagging. https://groups.google.com/a/chromium.org/g/net-
dev/c/KL1TC-O51fM/m/0b26cspCAwAJ. (Archived on 22/05/2021).

[13] Jawad Manzoor, Idilio Drago, and Ramin Sadre. 2016. The curious case of parallel
connections in HTTP/2. InConference on Network and ServiceManagement (CNSM
’16). https://doi.org/10.1109/CNSM.2016.7818414

[14] Jawad Manzoor, Ramin Sadre, Idilio Drago, and Llorenç Cerdà-Alabern. 2018.
Is There a Case for Parallel Connections with Modern Web Protocols?. In IFIP
Networking Conference and Workshops (NETWORKING ’18). https://doi.org/10.2
3919/IFIPNetworking.2018.8696647

[15] Robin Marx, Peter Quax, Axel Faes, and Wim Lamotte. 2017. Concatenation,
Embedding and Sharding: Do HTTP/1 Performance Best Practices Make Sense in
HTTP/2?. In Conference on Web Information Systems and Technologies (WEBIST
’17). https://doi.org/10.5220/0006364101600173

[16] Pat Meenan, Rick Viscomi, Paul Calvano, and Barry Pollard. 2021. HTTP Archive.
https://httparchive.org/. (Archived on 26/05/2021).

[17] Mark Nottingham. 2017. Issue 697333: Support ORIGIN frame.
https://bugs.chromium.org/p/chromium/issues/detail?id=697333. (Accessed on
25/05/2021).

[18] Mark Nottingham and Erik Nygren. 2018. The ORIGIN HTTP/2 Frame. RFC 8336.
RFC Editor. https://www.rfc-editor.org/rfc/rfc8336.txt

[19] Eric Roman and Matt Menke. 2018. NetLog: Chrome’s network logging
system. https://www.chromium.org/developers/design-documents/network-
stack/netlog. (Archived on 22/05/2021).

[20] Sitespeed.io. 2021. Browsertime - Your browser, your page, your scripts!
https://github.com/sitespeedio/browsertime. (Archived on 26/05/2021).

[21] StatCounter. 2021. Browser Market Share Worldwide.
https://gs.statcounter.com/browser-market-share. (Archived on 22/05/2021).

[22] Anne van Kesteren. 2016. Allow connection reuse for request without credentials
when TLS client auth is not in use. https://github.com/whatwg/fetch/issues/341.
(Archived on 22/05/2021).

[23] Anne van Kesteren. 2017. Allow some sharing of connections with different
anonymous attributes. https://bugzilla.mozilla.org/show_bug.cgi?id=1363284.
(Archived on 22/05/2021).

[24] Anne van Kesteren. 2021. Fetch Standard. https://fetch.spec.whatwg.org/.
(Archived on 22/05/2021).

[25] Matteo Varvello, Kyle Schomp, David Naylor, Jeremy Blackburn, Alessandro
Finamore, and Konstantina Papagiannaki. 2016. Is the Web HTTP/2 Yet?. In
Passive and Active Measurement (PAM ’16). https://doi.org/10.1007/978-3-319-
30505-9_17

[26] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2014. How Speedy is SPDY?. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’14). https://www.usenix.org/confere
nce/nsdi14/technical-sessions/wang

[27] Maarten Wijnants, Robin Marx, Peter Quax, and Wim Lamotte. 2018. HTTP/2
Prioritization and Its Impact on Web Performance. In World Wide Web Conference
(WWW ’18). https://doi.org/10.1145/3178876.3186181

[28] Torsten Zimmermann, Jan Rüth, Benedikt Wolters, and Oliver Hohlfeld. 2017.
How HTTP/2 Pushes the Web: An Empirical Study of HTTP/2 Server Push. In
IFIP Networking Conference and Workshops (NETWORKING ’17). https://doi.org/
10.23919/IFIPNetworking.2017.8264830

7

https://doi.org/10.1145/3419394.3423626
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
https://www.ietf.org/archive/id/draft-ietf-quic-http-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-http-34.txt
https://doi.org/10.1007/978-3-319-54328-4_4
https://doi.org/10.1145/2815675.2815717
https://doi.org/10.1145/2815675.2815717
https://certbot.eff.org/
http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc7230.txt
https://arxiv.org/abs/1707.05836
https://hpbn.co/
https://web.archive.org/web/20210517/https://httparchive.org/reports/state-of-the-web#reqTotal
https://web.archive.org/web/20210522/https://groups.google.com/a/chromium.org/g/net-dev/c/KL1TC-O51fM/m/0b26cspCAwAJ
https://web.archive.org/web/20210522/https://groups.google.com/a/chromium.org/g/net-dev/c/KL1TC-O51fM/m/0b26cspCAwAJ
https://doi.org/10.1109/CNSM.2016.7818414
https://doi.org/10.23919/IFIPNetworking.2018.8696647
https://doi.org/10.23919/IFIPNetworking.2018.8696647
https://doi.org/10.5220/0006364101600173
https://web.archive.org/web/20210526/https://httparchive.org/
https://bugs.chromium.org/p/chromium/issues/detail?id=697333
https://www.rfc-editor.org/rfc/rfc8336.txt
https://web.archive.org/web/20210522/https://www.chromium.org/developers/design-documents/network-stack/netlog
https://web.archive.org/web/20210522/https://www.chromium.org/developers/design-documents/network-stack/netlog
https://web.archive.org/web/20210526/https://github.com/sitespeedio/browsertime
https://web.archive.org/web/20210522/https://gs.statcounter.com/browser-market-share
https://web.archive.org/web/20210522/https://github.com/whatwg/fetch/issues/341
https://web.archive.org/web/20210522/https://bugzilla.mozilla.org/show_bug.cgi?id=1363284
https://web.archive.org/web/20210522/https://fetch.spec.whatwg.org/
https://doi.org/10.1007/978-3-319-30505-9_17
https://doi.org/10.1007/978-3-319-30505-9_17
https://www.usenix.org/conference/nsdi14/technical-sessions/wang
https://www.usenix.org/conference/nsdi14/technical-sessions/wang
https://doi.org/10.1145/3178876.3186181
https://doi.org/10.23919/IFIPNetworking.2017.8264830
https://doi.org/10.23919/IFIPNetworking.2017.8264830

IMC ’21, November 2–4, 2021, Virtual Event, USA Sander et al.

HTTP Archive Alexa 100k

Certificate Issuer ↑ Conns. Domains ↑ Conns. Domains

Google Trust Services 1 28.14 M 259.50 k 1 844.42 k 11.45 k
DigiCert Inc 2 12.12 M 326.24 k 2 291.77 k 21.98 k
Cloudflare, Inc. 3 6.44 M 698.13 k 3 136.58 k 31.57 k
Amazon 4 4.74 M 256.03 k 4 135.71 k 18.20 k
Let’s Encrypt 5 4.38 M 1.89 M 5 70.64 k 28.33 k
Sectigo Limited 6 3.59 M 434.18 k 6 64.63 k 10.62 k
GlobalSign nv-sa 7 1.52 M 115.13 k 7 47.08 k 6.01 k
GoDaddy.com, Inc. 8 814.81 k 134.92 k 8 20.30 k 4.07 k
Yandex LLC 9 468.86 k 178 9 9.97 k 49
COMODO CA Limited 10 250.47 k 9.92 k 11 4.22 k 352
Microsoft Corporation 11 239.44 k 3.03 k 10 8.64 k 230

Table 5: Top 10 certificate issuers by Issuer Org. for all con-
nections and their original / SNI domain.

A FURTHER RESULTS
In the following, we describe further details about our datasets
complementing our results. Here, we look at the total share of
issuers for all connections, which ASNs have been observed being
affected, the overlap between both datasets and how load-balancing
influences the DNS resolving process in greater depth.

A.1 Certificate Issuer Share
We showed that in the ecosystem of certificate issuers, mainly
Google Trust Services and Let’s Encrypt are involved for redun-
dant connections of cause CERT. These connections have to be
opened due to non-overlapping certificate subject names. In the
following, we present the shares of the top 10 certificate issuers
over all opened connections in Table 5 to allow these results to
be set into perspective. We see that Google Trust Services is the
Issuer which occurs for the most connections, while Let’s Encrypt
is less often seen over all connections, although it is also in the
top-2 for the redundant connections of class CERT. Domain-wise,
we can see that Let’s Encrypt leads, followed by Cloudflare in the
HTTP Archive and vice versa for our measurements. All in all, we
can see that both leaders, Let’s Encrypt w.r.t. domains and Google
w.r.t. connections, reflect in our measurements w.r.t. to their market
share of overall connections and domains.

A.2 ASs Affected by Cause IP
Similarly, we showed which domains have been involved in cause
IP (cf. 5.3.1), but not which content providers were responsible for
providing these resources. Hence, Table 6 shows the top 10 ASs
which were involved in redundant connections of type IP. Unsur-
prisingly, the Google and the Facebook AS show up, which we
identified as being mainly responsible for redundant connections
of type IP. However, these parties operate their own CDNs, which
mostly also provide their content. Contrasting, Amazon shows
up in the AS list, but not as an involved party w.r.t. the domains,
hinting at its cloud instances or Cloudfront CDN being responsi-
ble. Indeed, Hotjar.com (occurs as place 12 for the HTTP Archive
measurements / as place 16 for our measurements of the involved
domains for the IP case, cf. Table 12) uses the Cloudfront CDN,

HTTP Archive Alexa 100k

AS ↑ Conns. Domains ↑ Conns. Domains

GOOGLE 1 8.04 M 143.49 k 1 315.57 k 7.14 k
AMAZON-02 2 1.74 M 46.71 k 2 50.67 k 7.51 k
FACEBOOK 3 1.63 M 360 3 32.04 k 81
AUTOMATTIC 4 402.71 k 3.36 k 10 3.38 k 58
CLOUDFLARENET 5 307.64 k 14.22 k 4 9.18 k 3.40 k
FASTLY 6 228.12 k 1.62 k 9 3.50 k 1.00 k
AMAZON-AES 7 220.43 k 10.71 k 5 7.22 k 886
EDGECAST 8 182.22 k 997 6 4.33 k 201
AKAMAI-ASN1 9 144.52 k 2.30 k 8 3.53 k 773
AKAMAI-AS 10 130.77 k 2.75 k 7 3.61 k 736

Table 6: Top 10 ASNs for connections of cause IP.

Ca
us

e

IP Ce
rt

HAR Overlap Endless Alexa Overlap Endless

Sites Conns. Sites Conns.

CERT = ≠ 4.03 k 6.63 k 5.06 k 8.86 k
IP ≠ = 23.85 k 110.64 k 27.06 k 175.05 k

CRED = = 16.84 k 29.61 k 24.00 k 51.72 k

Redund. 25.34 k 135.33 k 28.63 k 218.97 k
Total 29.53 k 451.71 k 29.53 k 608.76 k

Table 7: Occurring causes for the overlap / intersection of the
HTTP Archive and our measurements.

which distributes static.hotjar.com and script.hotjar.com to differ-
ent IPs. Amazon adapting its DNS load-balancing could help here
to support connection reuse.

The other CDNs and providers occur in much lower quantities.
AUTOMATTIC can be related to the Wordpress tools from wp.com,
hence its reduced domain count in contrast to Cloudflare. Never-
theless, both account for around and more than 20 times fewer
connections than Google, respectively.

A.3 Overlap of Results Between Both Datasets
Throughout our paper, we compare the results between the HTTP
Archive and our Alexa list, which diverge in visited domains. Hence,
we here present the overlap of both datasets, i.e., we intersect the
datasets w.r.t. the visited URLs to show how both measurements
map to each other. The general results are shown in Table 7 for our
overlapping 29.53 k sites. As can be seen, all numbers for the Alexa
Overlap dataset are larger than for the HAR dataset as we had to
filter 490.32 k requests of the total 2.71 M HTTP/2 requests. Our
own dataset consists of 2.98 M HTTP/2 requests, of which none
had to be filtered. Table 8 shows the top 5 origins for the IP cause
for the overlap. It matches the top origins in Table 2 surprisingly
well. However, we can still see a difference in the top origins be-
tween our and the HTTP Archive measurements which cannot be
explained by the filtered requests. Instead, our geolocation seems to
affect Google to redirect us to its German domain. Nevertheless, the
remaining origins differ only slightly in their connection counts. Ta-
ble 9 shows the top certificate issuers between both measurements.

8

Sharding and HTTP/2 Connection Reuse Revisited:
Why Are There Still Redundant Connections? IMC ’21, November 2–4, 2021, Virtual Event, USA

HTTP Archive Alexa

Origin ↑ Conns. ↑ Conns.

www.google-analytics.com 1 15.34 k 1 20.76 k
prev: www.googletagmanager.com 14.74 k 14.59 k

www.facebook.com 2 9.44 k 4 9.36 k
prev: connect.facebook.net 9.44 k 9.34 k

pagead2.googlesyndication.com 3 6.52 k 5 7.26 k
prev: www.googletagservices.com 4.12 k 5.57 k

googleads.g.doubleclick.net 4 5.91 k 6 7.24 k
prev: pagead2.googlesyndication.com 4.20 k 4.94 k

tpc.googlesyndication.com 5 5.15 k 9 6.05 k
prev: pagead2.googlesyndication.com 3.49 k 4.90 k

www.google.de 2 10.16 k
prev: www.gstatic.com 6.97 k

apis.google.com 79 106 3 9.71 k
prev: www.gstatic.com 9.64 k

Table 8: Top 5 origins, their redundant connections, rank
(↑) and reusable previous connections for cause IP for the
overlap / intersection of the HTTP Archive and our measure-
ments.

HTTP Archive Alexa

Certificate Issuer ↑ Conns. Domains ↑ Conns. Domains

Google Trust Services 1 2.69 k 130 1 3.63 k 73
Let’s Encrypt 2 2.39 k 733 2 2.42 k 772
DigiCert Inc 3 655 189 3 1.34 k 213
Sectigo Limited 4 202 110 5 308 118
GlobalSign nv-sa 5 189 100 4 347 118

Table 9: Top 5 certificate issuers w.r.t. redundant connections
of cause CERT and unique domains for the overlap / inter-
section of the HTTP Archive and our measurements.

Connection-wise, the results are very close and the number of do-
mains also differs by less than a factor of 2. Still, the numbers do not
match perfectly, which we attribute to the vantage point difference.
Similarly, Table 10 shows that the top domains for cause CERT
overlap, but are not exactly the same and again our geolocation
seems to influence redirection at Google.

A.4 Load-Balancing Influence on Cause IP
Moreover, we saw that certain domains point to different IPs al-
though the underlying content was available at the respectively
other IP. We attribute this effect to load-balancing, which can also
be a root-cause for differences between our measurements and the
HTTP Archive measurements. Hence, we check the temporal and
spatial dependency of DNS resolution for our 20 most-occurring
domains (which we present in Table 12). We resolve these domains
over the course of several days via 14 different DNS resolvers, which
we list in Table 11. We selected these resolvers via public DNS lists
at https://dnschecker.org/ and https://public-dns.info/ and made
sure that they had reverse DNS entries. Moreover, we checked that
ECS [6] is not supported. We then queried the domains every 6 min-
utes and checked whether the resulting IPs overlap, i.e., whether

HTTP Archive Alexa

Domain ↑ Conns. ↑ Conns. Issuer

adservice.google.com 1 864 2 661 GTS
prev: pagead2.googlesyndication.com 397 253

fast.a.klaviyo.com 2 609 3 641 LE
prev: static.klaviyo.com 608 641

pagead2.googlesyndication.com 3 481 1 695 GTS
prev: adservice.google.com 470 351

googleads.g.doubleclick.net 4 412 7 307 GTS
prev: www.googleadservices.com 393 246

alb.reddit.com 5 161 11 185 DCI
prev: www.redditstatic.com 161 185

adservice.google.de 4 620 GTS
prev: pagead2.googlesyndication.com 258

sync.targeting.unrulymedia.com 5 533 DCI
prev: sync.1rx.io 533

Table 10: Top 5 domains encountered for redundant connec-
tions to the same IPs due to absent SAN entries (CERT) for
the overlap / intersection of the HTTP Archive and our mea-
surements.

IP Country Operator

internal Germany RWTH Aachen University
168.126.63.1 South Korea KT Corporation
172.104.237.57 Germany FreeDNS
172.104.49.100 Singapore FreeDNS
177.47.128.2 Brazil Ver Tv Comunicações S/A
178.237.152.146 Spain MAXEN TECHNOLOGIES, S.L.
195.208.5.1 Russia MSK-IX
203.50.2.71 Australia Telstra Corporation Limited
210.87.250.59 Hong Kong HKT Limited
212.89.130.180 Germany Infoserve GmbH
221.119.13.154 Japan Marss Japan Co., Ltd
8.0.26.0 United Kingdom Level 3 Communications, Inc.
8.0.6.0 USA Level 3 Communications, Inc.
80.67.169.12 France French Data Network (FDN)

Table 11: DNS resolvers used to analyze DNS-based load-
balancing.

connection reuse is aided. In Figure 3, we show the temporal pat-
tern of the overlaps by counting the resolvers for which the two
domains shown aside resolve to overlapping IPs. We filtered time
slots where not all DNS resolvers answered correctly to avoid noise
due to missing data. Darker areas denote more resolvers for which
the DNS answers overlapped. We can see that certain domains
never overlap, while other domains fluctuate. E.g., www.google-
analytics.com and www.googletagmanager.com did not overlap,
while fonts.gstatic.com and gstatic.com overlap sometimes. I.e., time
and also vantage point influencing the load-balancing influence
whether domains resolve to the same IP and connection reuse is
effective or not.

9

https://dnschecker.org/
https://public-dns.info/

IMC ’21, November 2–4, 2021, Virtual Event, USA Sander et al.

HTTP Archive Alexa 100k

Origin ↑ Conns. ↑ Conns.

www.google-analytics.com 1 2.25 M 1 52.31 k
prev: www.googletagmanager.com 2.12 M 36.93 k

www.facebook.com 2 1.52 M 4 25.05 k
prev: connect.facebook.net 1.51 M 25.02 k

googleads.g.doubleclick.net 3 615.45 k 6 17.03 k
prev: pagead2.googlesyndication.com 398.41 k 10.19 k

pagead2.googlesyndication.com 4 606.59 k 7 16.99 k
prev: googleads.g.doubleclick.net 418.69 k
prev: www.googletagservices.com 12.60 k

tpc.googlesyndication.com 5 465.56 k 9 13.38 k
prev: pagead2.googlesyndication.com 362.79 k 9.93 k

www.gstatic.com 6 439.01 k 185 117
prev: fonts.gstatic.com 330.07 k 97

www.googletagservices.com 7 416.76 k 13 9.76 k
prev: pagead2.googlesyndication.com 370.60 k 8.21 k

partner.googleadservices.com 8 379.79 k 15 7.05 k
prev: pagead2.googlesyndication.com 376.37 k 7.04 k

www.google.com 9 379.12 k 442 34
prev: www.youtube.com 126.03 k

stats.g.doubleclick.net 10 342.53 k 8 16.02 k
prev: googleads.g.doubleclick.net 203.38 k 10.96 k

fonts.gstatic.com 11 231.71 k 64 634
prev: www.gstatic.com 65.16 k 582

script.hotjar.com 12 226.57 k 16 6.98 k
prev: static.hotjar.com 225.67 k 6.98 k

vars.hotjar.com 13 216.27 k 18 6.76 k
prev: static.hotjar.com 213.04 k 6.76 k

in.hotjar.com 14 202.01 k 20 3.98 k
prev: static.hotjar.com 196.92 k
prev: script.hotjar.com 3.98 k

fonts.googleapis.com 15 186.71 k 482 29
prev: ajax.googleapis.com 152.37 k 19

stats.wp.com 16 157.30 k 36 1.28 k
prev: c0.wp.com 73.49 k 908

securepubads.g.doubleclick.net 17 143.31 k 17 6.78 k
prev: www.googletagservices.com 112.36 k 5.76 k

ajax.googleapis.com 18 142.01 k 12 11.00 k
prev: fonts.googleapis.com 136.17 k 11.00 k

maps.googleapis.com 19 118.04 k 26 2.59 k
prev: fonts.googleapis.com 109.55 k 2.59 k

www.googleadservices.com 20 106.64 k 21 3.79 k
prev: stats.g.doubleclick.net 78.97 k 2.31 k

www.google.de 12 255 6 2 27.74 k
prev: www.gstatic.com 18.61 k

apis.google.com 82 14.25 k 3 26.10 k
prev: www.gstatic.com 25.91 k

ogs.google.com 1 375 14.25 k 5 26.10 k
prev: www.gstatic.com 19.03 k

adservice.google.com 22 95.16 k 10 12.88 k
prev: www.gstatic.com 8.93 k

adservice.google.de 4 944 25 11 12.68 k
prev: www.gstatic.com 8.44 k

cm.g.doubleclick.net 28 69.85 k 14 7.71 k
prev: googleads.g.doubleclick.net 5.67 k

i.ytimg.com 115 9.32 k 19 4.25 k
prev: www.gstatic.com 2.66 k

Table 12: Top 20 domains for the IP case.

0 2 4 6
of resolvers with overlap

19-09-21 00:00

21-09-21 00:00

23-09-21 00:00

25-09-21 00:00

27-09-21 00:00
Time

in.hotjar.com

i.ytimg.com

cm.g.doubleclick.net

adservice.google.de

adservice.google.com

pagead2.googlesyndication.com

ogs.google.com

apis.google.com

www.google.de

www.googleadservices.com

maps.googleapis.com

ajax.googleapis.com

securepubads.g.doubleclick.net

stats.wp.com

fonts.googleapis.com

in.hotjar.com

vars.hotjar.com

script.hotjar.com

fonts.gstatic.com

stats.g.doubleclick.net

www.google.com

partner.googleadservices.com

www.googletagservices.com

www.gstatic.com

tpc.googlesyndication.com

pagead2.googlesyndication.com

googleads.g.doubleclick.net

www.facebook.com

www.google-analytics.com

prev: script.hotjar.com

prev: www.gstatic.com

prev: googleads.g.doubleclick.net

prev: www.gstatic.com

prev: www.gstatic.com

prev: www.googletagservices.com

prev: www.gstatic.com

prev: www.gstatic.com

prev: www.gstatic.com

prev: stats.g.doubleclick.net

prev: fonts.googleapis.com

prev: fonts.googleapis.com

prev: www.googletagservices.com

prev: c0.wp.com

prev: ajax.googleapis.com

prev: static.hotjar.com

prev: static.hotjar.com

prev: static.hotjar.com

prev: www.gstatic.com

prev: googleads.g.doubleclick.net

prev: www.youtube.com

prev: pagead2.googlesyndication.com

prev: pagead2.googlesyndication.com

prev: fonts.gstatic.com

prev: pagead2.googlesyndication.com

prev: googleads.g.doubleclick.net

prev: pagead2.googlesyndication.com

prev: connect.facebook.net

prev: www.googletagmanager.com

Figure 3: Number of DNS vantage points where domains
overlapped.

10

	Abstract
	1 Introduction
	2 Multiple Connections and HTTP
	2.1 HTTP/1 – Parallel Connections
	2.2 HTTP/2 and HTTP/3 – One Connection

	3 Causes of Multiple Connections
	4 Methodology
	4.1 Connection Analysis
	4.2 Chromium-based Connection Data
	4.3 Limitations

	5 Results
	5.1 Websites with Redundant Connections
	5.2 Causes of Redundant Connections
	5.3 Unraveling Causes for Redundancy

	6 Conclusion
	References
	A Further Results
	A.1 Certificate Issuer Share
	A.2 ASs Affected by Cause IP
	A.3 Overlap of Results Between Both Datasets
	A.4 Load-Balancing Influence on Cause IP

