
Video Conferencing and Flow-Rate Fairness:
A First Look at Zoom and the
Impact of Flow-Queuing AQM

Constantin Sander, Ike Kunze, Klaus Wehrle, and Jan Rüth
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Abstract. Congestion control is essential for the stability of the Inter-
net and the corresponding algorithms are commonly evaluated for inter-
operability based on flow-rate fairness. In contrast, video conferencing
software such as Zoom uses custom congestion control algorithms whose
fairness behavior is mostly unknown. Aggravatingly, video conferencing
has recently seen a drastic increase in use – partly caused by the COVID-
19 pandemic – and could hence negatively affect how available Internet
resources are shared. In this paper, we thus investigate the flow-rate
fairness of video conferencing congestion control at the example of Zoom
and influences of deploying AQM. We find that Zoom is slow to react to
bandwidth changes and uses two to three times the bandwidth of TCP
in low-bandwidth scenarios. Moreover, also when competing with delay
aware congestion control such as BBR, we see high queuing delays. AQM
reduces these queuing delays and can equalize the bandwidth use when
used with flow-queuing. However, it then introduces high packet loss for
Zoom, leaving the question how delay and loss affect Zoom’s QoE. We
hence show a preliminary user study in the appendix which indicates
that the QoE is at least not improved and should be studied further.

1 Introduction

The stability of the Internet relies on distributed congestion control to avoid a
systematic overload of the infrastructure and to share bandwidth. Consequently,
protocols that make up large shares of Internet traffic, such as TCP and QUIC,
feature such congestion control mechanisms.

The COVID-19 pandemic and subsequent actions to limit its spread have now
caused a drastic increase in traffic related to remote-working [16]. Of particu-
lar interest is the increasing share of video conferencing software which typically
bases on UDP to conform to the inherent low-latency and real-time requirements
which cannot be provided by TCP [8,14]. Yet, UDP features no congestion con-
trol, meaning that the video conferencing software has to implement it on the
application layer. While this allows for adapting the video conference to the spe-
cific network conditions [11,14], such implementations can introduce unknown
effects and undesired behavior when interacting with “traditional” congestion
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control. Especially in light of the now increased share of the overall traffic, these
tailored implementations can potentially pose a threat to Internet stability.

Thus, we investigate the interaction of real-world video conferencing software
and traditional congestion control. For our study, we choose Zoom as it has seen
an enormous increase in traffic share by at least one order of magnitude from
being marginally visible up to surpassing Skype and Microsoft Teams at certain
vantage points [16]. We focus on how Zoom reacts to loss and how it yields traffic
to competing TCP-based applications. We also study the impact of Active Queue
Management (AQM) on the bandwidth sharing as it is of growing importance.
Specifically, our work contributes the following:

– We present a testbed-based measurement setup to study Zoom’s flow-rate
when competing against TCP CUBIC and BBRv1.

– Comparing different bandwidths, delays, and queue sizes, we find that Zoom
uses a high share on low-bandwidth links and that there are high queuing
delays, even despite TCP congestion control trying to reduce it (e.g., BBR).

– We show that flow-queuing AQM reduces queuing delay and establishes flow-
rate equality to a certain degree reducing Zoom’s and increasing TCP’s rate
by dropping Zoom’s packets, where the former is probably beneficial but the
latter is probably detrimental for Zoom’s QoE. Our preliminary user study
shows that users do not see QoE improvements with flow-queuing AQM.

Structure. Sec. 2 discusses the definition of fairness, as well as related work
on general and video conferencing specific congestion control fairness analyses.
Sec. 3 describes the testbed for our flow-rate equality measurements. Sec. 4 shows
our general results on Zoom and the impact of AQM on flow-rate equality, packet
loss, and delay. A preliminary user study evaluating the impact of AQM on the
QoE can be found in the appendix. Finally, Sec. 5 concludes this paper.

2 Background and Related Work

The interaction of congestion control algorithms, especially regarding fairness,
is a frequent focus of research. It has been thoroughly investigated for common
TCP congestion control algorithms. However, the definition of fairness itself has
also been investigated and discussed.
Fairness Definition. Most work relies on the conventional flow-rate definition
of fairness: competing flows should get an equal share of the available band-
width [19]. However, there are compelling arguments that flow-rate fairness is
not an optimal metric [7,27] and new metrics such as harm [27] propose to also
consider the demands of applications and their flows. We agree that flow-rate
equality is no optimal metric for fairness as it ignores specific demands and the
impact of delay, thus making it an outdated fairness estimate.

On the other hand, the notion of harm is hard to grasp as it requires (poten-
tially wrong) demand estimates. Further, techniques such as AQM are demand
unaware and flow-queuing even specifically aims at optimizing flow-rate equality,
ignoring any actual application demands. Hence, given the prevalence of flow-
rate equality in related work and AQM techniques, we explicitly use flow-rate



equality as our fairness metric to evaluate the precise impact of this metric on
the application performance. That is, we want to, e.g., see the impact on video
conferencing when flow-queuing is used. This naturally also means that results
depicting an “unfair” flow-rate distribution are not necessarily bad.

TCP Congestion Control. Many of the congestion control studies have es-
pecially looked at CUBIC [17] and BBR [10] and found that BBR dominates
in under-buffered scenarios causing packet loss and making CUBIC back off,
while it is disadvantaged in over-buffered scenarios [18,23,26,28]. Here, CUBIC,
as a loss-based algorithm, fills the buffer and increases the queuing delay which
makes BBR back off. Introducing AQM, these behavior differences vanish.

Impact of AQM. AQM mechanisms come with the potential of giving end-
hosts earlier feedback on congestion, thus helping to reduce queuing delays, and
there have been extended studies regarding their fairness (for a survey see [6]).
While some AQM algorithms are specifically designed to enable a fair bandwidth
sharing (see [13] for an overview and evaluation), generally, any AQM can be
made to fairly share bandwidth with the help of fair queuing [15]. Today, this idea
is most commonly implemented through a stochastic fair queuing (SFQ) which
performs similar to a true fair queuing when the number of flows is limited. In
fact, several works (e.g., [22,23]) show that AQM using this SFQ (often called
flow-queuing) can create flow-rate fairness while effectively limiting congestion,
even though there are no comprehensive studies available in literature.

2.1 Congestion Control For Video Conferencing

Loss-based congestion control, such as CUBIC, is not favorable to delay-sensitive
real-time applications. Hence, research has proposed several congestion control
algorithms tailored to the needs of video conferencing. However, in contrast to
general-purpose congestion control, there is only limited research on its interac-
tion mostly focusing on proposed algorithms with known intrinsics.

Known Algorithms. For example, the Google Congestion Control (GCC) [11],
used in Google Chrome for WebRTC, was tested for flow-rate fairness [11,12].
The results indicate that GCC shares bandwidth equally with CUBIC when
using a tail-drop queue and also subject to the CoDel and PIE AQM algorithms.

There are similar findings for the Self-Clocked Rate Adaptation for Multime-
dia (SCReAM) [20] congestion control algorithm. It achieves an approximately
equal share with a long-lived TCP flow on a tail-drop queue and yields bandwidth
when using CoDel [21]. Contrasting, the Network-Assisted Dynamic Adaptation
(NADA) congestion control [32] shares bandwidth equally when using a tail-drop
queue, but uses bigger amounts when being governed by an AQM algorithm.

Unknown Algorithms in Video Conferencing Software. However, many
actually deployed real-world congestion control algorithms in video conferencing
software are unknown and closed-source. Thus, similar to our work, research also
studies the externally visible behavior of video conferencing software.

De Cicco et al. [14] investigate the behavior of Skype’s congestion control and
find that it is generally not TCP-friendly and claims more than its equal share.



Interestingly, Zhang et al. [29] found that Skype yields a bigger share to com-
peting TCP flows, but only after exceeding a certain loss threshold. However, in
contrast to work on TCP congestion control, these studies only consider limited
scenarios and generally do not provide extensive evaluations (e.g., no AQM).

Other works focus even more only on aspects impacting the video conference,
e.g., how the audio and video quality evolve subject to packet loss with unlimited
rates [24,30] or very specific wireless settings [31].
Takeaway. Studies on general congestion control are not applicable to video
conferencing. Research on video conferencing software, on the other hand, mostly
focuses on the concrete impact on its quality while the number of evaluation
scenarios and the context to the general congestion control landscape is scarce.

We thus identify a need for a more thorough evaluation of real-world video
conferencing congestion control that also considers the impact of different band-
widths, buffer sizes, or AQM on fairness. For this purpose, we devise a method-
ology that centers around a configurable testbed which allows us to evaluate the
behavior of the congestion control of Zoom.

3 Measurement Design

Research on congestion control fairness is often done using simulations or isolated
testbeds to focus on the intrinsics of the algorithms. In contrast, our work on
Zoom forbids such an approach as the Zoom clients interact with a cloud-based
backend that is responsible for distributing audio and video traffic. Thus, to fully
grasp the real-world performance of Zoom, we devise a testbed that connects to
this backend while still letting Zoom’s traffic compete with a TCP flow over
a variety of network settings. While we consequently have to take potential
external effects into account, our testbed still allows us to control parameters,
such as bottleneck bandwidth, queuing, and delay.

3.1 Preliminaries

For our investigations, we set up two Zoom clients which then connect to a
joint Zoom conference via the Zoom backend running in a data center. We find
that free Zoom licenses use data centers operated by Oracle in the US, while
our University license mostly connects to data centers operated by AWS in Eu-
rope. We generally see that connections are established to at least two different
AWS data centers, one in Frankfurt (Germany) and one in Dublin (Ireland).
As our upstream provider peers at DE-CIX in Frankfurt, we choose to focus on
these connections to reduce the number of traversed links, thus minimizing the
probability of external effects, such as changing routes or congestion.

3.2 Testbed Setup

As shown in Fig. 1, our testbed uses a dumbbell topology and consists of five
dedicated machines. In the center, one machine serves as the configurable bot-
tleneck link over which Zoom Client 1 (ZC 1) connects to the Zoom backend to
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Fig. 1: Testbed setup representing a dumbbell topology

join a conference with Zoom Client 2 (ZC 2). Our two remaining machines (TCP
Client, TCP Server) operate a concurrent TCP flow to assess competition.

Testbed Interconnection. All our machines are interconnected using 1 Gbps
Ethernet links. The uplink to our university’s network is 10 Gbps which in turn
connects to the German Research Network (DFN) via two 100 Gbps links. The
DFN then peers at DE-CIX with, e.g., AWS. We can thus be reasonably sure
that our configurable bottleneck machine represents the overall bottleneck.

Shaping the Bottleneck. We configure our bottleneck using Linux’s traffic
control (TC) subsystem similar to [25] to create network settings with different
bandwidths, delays, queue sizes, and queue management mechanisms. For rate-
limiting, we use token bucket filters with a bucket size of one MTU (to minimize
bursts) on the egress queues in both directions. Similarly, we also configure
the AQM on the egress queues. Delay is modeled on the ingress queues using
intermediate function blocks (ifbs) and netem. We first create an additional
ingress qdisc via ifb and add the delay to the egress of this ifb via netem. This
technique is necessary as netem is not directly compatible with AQM qdiscs [1]
and usage of netem on the end-hosts would cause issues due to TCP small
queues [9]. Further, we add no artificial jitter, as this causes packet reorderings,
as such, jitter is only introduced through the flows filling the queue itself.

Balancing RTTs. Our testbed compensates for differing RTTs and ensures
that the Zoom and the TCP flow have the same RTT, a requirement for the
common flow-rate equality definition. For this, we first measured the average
delay between different AWS hosts and ZC 1 as well as between TCP Client
and TCP Server prior to our experiments. We then adapted the netem delay
accordingly such that the TCP flow and the flow between ZC 1 and AWS have
about the same RTT when the queue is empty. By adapting the delay prior to
our experiments, we avoid skewing the initial RTT of flows which we presume to
be important for Zoom’s congestion control, but accept a potential bias due to
changing hosts at AWS which we cannot predict prior to establishing our video
conferences. However, the relative error of this bias should be insignificant as we
emulate rather large artificial RTTs.

3.3 Fairness Measurement Scenarios and Procedure

With our measurements, we aim to represent video conferences from a low-
speed residential access where Zoom’s video flow and a TCP flow (e.g., a movie
download) compete. The used parameters are shown in Table 1.



BW [Mbps] RTT [ms] QSize [BDP] AQM CC Order Direction

0.5, 1, 2, 4 30, 50 0.5, 2, 10
Tail-Drop CUBIC Zoom first Downlink

(FQ )CoDel BBRv1 TCP first Uplink

Table 1: Parameter configuration for our testbed

The lowest bandwidth (0.5 Mbps) falls slightly below Zoom’s requirements of
0.6 Mbps [2]. Yet, we argue that it also has to behave sound in out-of-spec cases.

We shape the bandwidth symmetrically, which is atypical for a residential
connection, but study the up- and downlink separately. We also adjust and
balance the minimum RTT (min-RTT) symmetrically as described before. As
queue sizes, we use multiples of the BDP, i.e., 0.5, 2, and 10× the BDP. When
investigating AQM, we use 2×BDP as AQM algorithms require headroom to
operate, and adopt the TC Linux defaults for CoDel (target 5ms and interval
100ms). Further, we vary which flow starts first to investigate late-comer effects.
Overcoming transient states. For our measurements, we want to avoid tran-
sient phases. As such, we usually wait in the order of half a minute after acti-
vating each flow to stabilize. We then start a 60 s measurement period in which
we capture all exchanged packets, measure the queuing delay, and also observe
the queue sizes at the bottleneck using a small eBPF program.
Video Conference. The Zoom video conference itself is established between
ZC 2 and ZC 1 (ensuring connectivity via AWS in Frankfurt). As their video
feeds, both clients simulate a webcam via v4l2loopback [3]. To rule out effects
of video compression on the congestion control behavior of Zoom, we ensure a
constant video data rate by using uniform noise as our video input.

Every scenario is repeated 30 times and retried where, e.g., Zoom restarts
due to high loss. The measurements were made from July 2020 to October 2020
on Linux 5.4.0-31 with Zoom version 5.0.408598.0517. To observe variations,
we sort the points in the following scatterplots chronologically from left to right.
Equality Metric. We measure flow-rate equality using the metric of our prior
work [25]. In contrast to, e.g., Jain’s fairness index [19], this metric shows which
flow over-utilizes the bottleneck by how much. The metric is defined as:

flow-rate equality =

{
1 − bytes(TCP )

bytes(Zoom) , if bytes(Zoom) ≥ bytes(TCP )

−1 + bytes(Zoom)
bytes(TCP ) , otherwise

flow-rate equality lies in the interval of [−1, 1]. With 0 both flows share the band-
width equally, while 1/−1 means that Zoom / TCP monopolizes the link.

Please note that flow-rate equality is likely not the desired metric to depict
a fair service enablement. For example, Zoom simply needs a certain data-rate
to deliver its service, as such flow-rate equality should likely not be used to
establish fairness, e.g., in an AQM. Nevertheless, we still opted for this metric
to i) judge what happens when an AQM tries to utilize this metric, and ii)
investigate the bandwidth demand and the ability of the congestion controller
to seize the required bandwidth as well as the side effects in doing so.
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Fig. 2: Zoom video flow behavior for a 50 ms RTT and a 10×BDP tail-drop queue.
Bandwidth (orange) is varied from 4 Mbps to 0.5 Mbps and back to 4 Mbps.

4 Zoom Inter-Protocol Fairness Results

In the following we present our findings on the behavior of Zoom by first ana-
lyzing its general congestion reaction (Section 4.1). We then discuss how ZC 1
competes with a TCP flow in scenarios without AQM at low bandwidths sub-
ject to different queue sizes (Section 4.2). We further evaluate the effects of using
CoDel (Section 4.3) and FQ CoDel (Section 4.4) AQM. Lastly, we show results of
a small-scale user study that investigates the effects of FQ CoDel on the actual
QoE, which can be found in the appendix to this work (Appendix A).

Before conducting our experiments, we first verify the standalone throughput
of TCP and Zoom in our scenarios. We find that TCP achieves a utilization above
80% in almost all cases except for 3 outliers out of 4800 runs. Similarly, Zoom’s
throughput for the AQM scenarios only changes by at most 10%. The following
differences in flow-rate equality are thus mainly due to the interaction of the
congestion control algorithms and not rooted in our settings.

4.1 General Observations on Zoom’s Behavior

We first observe the behavior of a single Zoom flow without competition in a
scenario with a 50 ms RTT and a 10×BDP tail-drop queue. Fig. 2 shows Zoom’s
video send rate when varying the bandwidth (orange) from 4 Mbps to 0.5 Mbps
and back. At first, Zoom’s backend (left) sends at slightly less than 4 Mbps
while the Zoom client (right) sends at ∼2.5 Mbps. In both cases, the queue is
empty. Similar to BBR [10], Zoom seems to repeatedly probe i) the bandwidth
by increasing its rate and ii) the min-RTT by reducing its rate.

Once we reduce the bandwidth to 0.5 Mbps, both Zoom entities keep sending
at ∼3.5 Mbps, thus losing many packets and filling the queue. After ∼30s, Zoom
reduces its rate to 0.5 Mbps. Surprisingly, the backend again increases the rate
by a factor of 4 shortly thereafter. After resetting the bandwidth to 4 Mbps,
Zoom slowly increases its rate on the uplink and faster on the downlink.

Packet loss and increased queuing delays do not seem to directly influence
Zoom’s sending behavior. However, Zoom occasionally restarted the video con-
ference completely, stopping sending and reconnecting to the backend with a new
bandwidth estimate not overshooting the bottleneck link. We filtered these oc-
currences from the following results as the time of reconnecting would influence
our metric and also the meaning of our “Zoom first” scenario.
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Fig. 3: Flow-rate equality for Zoom competing at a 0.5 × BDP queue with TCP.

We also changed the min-RTT from 50ms to 500ms instead of the bandwidth.
We did not see any obvious reaction, although we expected that Zoom backs off
to wait for now delayed signaling information or to reduce potential queuing.

To summarize, Zoom handles up- and downlink differently and does not seem
to directly react on increased queuing or loss, instead reacting slowly which leads
to big spikes of loss. We next investigate how this impacts competing flows.

4.2 Competition at Tail-Drop Queues

Undersized Tail-Drop Queue. We first examine Zoom’s behavior when com-
peting at a 0.5×BDP tail-drop queue against TCP CUBIC and BBR. The scat-
terplots in Fig. 3 show our flow-rate equality for downlink (a) and uplink (b).

Downlink. Zoom uses a disproportionate bandwidth share on the downlink
with bottleneck bandwidths ≤ 1 Mbps. The flow-rate equality is mostly above
0.5, i.e., Zoom’s rate is more than twice the rate of the TCP flow. For higher
bandwidths, Zoom yields more bandwidth. Additionally, we can see that TCP
flows starting first result in slightly better flow-rate equality. For CUBIC, equal-
ity values of around 0 can be first seen at 4 Mbps. For BBR, equality values of
around 0 can already be seen at 2 Mbps. However, when being started first and
at 4 Mbps, BBR disadvantages Zoom significantly.

Uplink. For the uplink, the equality values are comparable, but in total
lower. This means that the TCP flows claim more bandwidth (especially with
BBR) and Zoom seems to act less aggressive. We posit that Zoom’s congestion
control might be adapted to the asymmetric nature of residential access links.
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Fig. 4: Flow-rate equality for Zoom competing at a 10 × BDP queue with TCP.

The queuing delays on the down- and uplink mostly exceed 50% of the max-
imum (not shown). We attribute this to the TCP flows as i) CUBIC always
fills queues, and ii) BBR overestimates the available bandwidth when competing
with other flows [28] and then also fills the queue plus iii) Zoom reacting slowly.
Slightly Oversized Tail-Drop Queues. When increasing the buffer size to
2×BDP, the results are surprisingly similar (and thus not visualized). CUBIC
can gather a slightly larger bandwidth share, which we attribute to its queue-
filling behavior. However, Zoom still holds twice the bandwidth of the TCP flows
at links with ≤1 Mbps, i.e. the equality values mostly exceed 0.5. Only on faster
links, CUBIC can gain an equal or higher bandwidth share. For BBR, equality
values are closer to 0 for bandwidths below 2 Mbps, i.e., Zoom as well as BBR
dominate less. For higher bandwidths, the results are equivalent to before. Also
the avg. queuing delay rises to about 75% due to filled queues as before.
Overlarge Tail-Drop Queues. Next, we study the flow-rates for large queues
of 10×BDP. Fig. 4 shows the results for downlink (a) and uplink (b).

Downlink. Contrary to our expectation, there is no significant improvement
in flow-rate equality for the downlink. Zoom still uses a high bandwidth share and
CUBIC’s queue-filling behavior does not result in a larger share. Compared to
the previous scenarios, the equality values are not decreasing significantly when
Zoom starts first and it even uses more bandwidth than before for the 4 Mbps
setting. For TCP CUBIC starting first, equality values now spread around 0.5,
regardless of the bandwidth. For Zoom starting first, BBR barely reaches values
below zero.
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Fig. 6: Queuing delay for Zoom+CUBIC competing at a tail-drop/CoDel queue.

Uplink. The scenario looks completely different for the uplink. Zoom yields
bigger parts of the bandwidth to CUBIC and even reduces on one third of
the bandwidth when BBR starts first. This is surprising, as BBR is known to
be disadvantaged in this overbuffered scenario [18]. We also checked if changes
between the BBR code used in [18] and our Linux Kernel 5.4 could explain this
difference, but the basic principle seems to be unaltered. Still, we remark that
the BBR codebase has seen significant changes since [18] and we are not aware
of any investigations how these changes affect BBR’s properties.

The queuing delay, shown in Fig. 5 for the uplink, still reaches about 75% of
the maximum queuing delay for CUBIC and BBR in low-bandwidth scenarios
where delay is slightly smaller on the uplink than on the downlink. BBR seems to
be able to reduce queuing delay in the higher bandwidth region, but we expected
that BBR would reduce the queuing delay more strongly in all scenarios.
Takeaway. We can see that Zoom is unfair w.r.t. flow-rate to CUBIC in low-
bandwidth scenarios with 1.0 Mbps and less, although Zoom is less aggressive on
the uplink. As BBR is more aggressive, it gains higher rates in these situations
– also on the downlink. However, all scenarios have in common that the queuing
delay is significantly increased being detrimental to video conferencing.

4.3 Competition at CoDel Queues

Using AQM might be beneficial, given the increased queuing delays. Hence, we
study Zoom and TCP flows competing at CoDel queues. We expect significant
changes in flow-rate equality as CoDel drops packets early to signal congestion.
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Fig. 7: Flow-rate equality for Zoom competing with TCP at an FQ CoDel queue

Yet, our results are very similar to the 2×BDP tail-drop queue, thus we do
not show them here. They only slightly shift towards CUBIC. However, CoDel
keeps its promise of reduced queuing delays, as shown in Fig. 6: The queuing
delay of Zoom competing with CUBIC (BBR looks similar) at 2×BDP queues
roughly halves when CoDel is used at 0.5 Mbps. For higher bandwidths, the
effect is even stronger. This is potentially beneficial for real-time applications.
Takeaway. All in all, CoDel does not significantly alter the flow-rate distribu-
tion. However, it keeps its promise of reducing the experienced queuing delays.

4.4 Competition at FQ CoDel Queues

To enforce flow-rate equality, we next apply FQ CoDel to the queue. FQ CoDel
adds stochastic fair-queueing to CoDel, i.e., it isolates flows into subqueues,
applies CoDel individually, and then serves the queues in a fair manner.

While the queuing delays are equivalent to CoDel and thus not shown, our
flow-rate equality metric significantly shifts towards TCP in most conditions
as shown in Fig. 7 for uplink (a) and downlink (b). For example, the down-
link results mostly range from 0.3 to -0.3 compared to prior findings of Zoom
dominating. The biggest advance for Zoom remains in the 0.5 Mbps setting.

On the uplink, equality differs. Zoom yields bandwidth when using BBR in
mostly all cases except for bandwidths ≤ 1.0 Mbps. For CUBIC, also no perfect
equalization can be seen. For bandwidths above 2.0 Mbps CUBIC gets bigger
shares, below this threshold, vice versa. We deduct this to Zoom being more
careful on the uplink and not using the whole probed bandwidth, leaving a gap.



Tail-Drop CoDel FQ CoDel

Dropped Received Dropped Received Dropped Received

TCP CUBIC 188.0 816.5 190.0 935.5 250.5 1260.5
Zoom 331.0 2824.0 515.5 2852.5 903.5 2880.5

Table 2: Median number of packets received and dropped for CUBIC and Zoom
at a 0.5 Mbps, 50 ms, 2×BDP bottleneck on the downlink (Zoom started first).

Zoom’s Reaction to Targeted Throttling. As we could see, FQ CoDel
allows to share bandwidth between Zoom and competing TCP flows after a
bottleneck more equally. However, it is unclear whether Zoom reduces its rate
or whether the AQM is persistently dropping packets, specifically in the low-
bandwidth scenarios. We hence show the dropped and sent packets for CUBIC
and Zoom over 60s in Table 2 for the 0.5 Mbps bottleneck with 2×BDP queue
and 50 ms RTT. We can see that Zoom does not reduce its packet-rate from a
tail-drop queue up to FQ CoDel. Instead, the AQM drops packets increasingly.
Takeaway. In combination with flow-queuing, CoDel can reduce the experienced
queuing delay, which is probably beneficial for Zoom’s QoE, while equalizing the
bandwidth share with TCP. However, in low-bandwidth scenarios this share is
still not perfectly equal. Zoom does not reduce its rate but CoDel and FQ CoDel
increasingly drop Zoom’s packets which might affect Zoom’s QoE negatively. A
preliminary user study shows that FQ CoDel does, indeed, not improve QoE and
can be found in the appendix.

5 Conclusion

In this work, we recognize the impact of video conferencing on Internet stability
and investigate congestion control fairness in combination with Zoom. Flow-rate
equality as fairness measure is well researched for TCP’s congestion control and
for real-world TCP flows in the Internet. However, for congestion control of video
conferencing software it is not – specifically regarding different scenarios. Hence,
we investigate Zoom as increasingly popular real-world deployment of video con-
ferencing. We find that Zoom uses high shares of bandwidth in low-bandwidth
scenarios yielding it when more bandwidth is available. Adding AQM, such as
CoDel, alone does not improve the bandwidth sharing, but reduces latency which
is probably beneficial for Zoom. Only when also using flow-queuing, more equal
bandwidth sharing can be achieved with FQ CoDel. However, this fair sharing
comes at the price of reduced bandwidth and packet loss for Zoom, potentially
reducing its QoE. Our small-scale user study found that FQ CoDel did not im-
prove the QoE. For future work, we imagine a more thorough user study to
evaluate Zoom’s QoE with AQMs such as FQ CoDel in more detail. Further,
testing Zoom’s reaction on ECN and multiple Zoom flows competing could give
interesting information on its behavior on backbone congestion.
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Appendix

In the following, we present results of a small-scale user study which we con-
ducted to analyze whether our findings regarding packet loss but also improve-
ments regarding delay have positive or negative impact on Zoom’s subjective
quality. However, as our study was performed with a limited number of partici-
pants due to COVID-19 restrictions, we had to restrict the number of scenarios
that we could investigate. Thus, the results and their generalizability are limited
and this study should be regarded as an initial step in understanding how QoE,
queuing and Zoom interact.

A QoE Impact of Flow-Queuing AQM

As we have shown in Section 4.4, flow-queuing AQM can achieve more equal
flow-rates and reduce latency when Zoom and TCP share a bottleneck. How-
ever, this means lower bandwidths for Zoom, so likely worse video quality. In
contrast, lower latencies should probably mean better interactivity. As the exact
correlation w.r.t. perceived experience is hard to grasp, we perform a small-
scale user study to capture the influence of flow-rate equality and AQM reduced
latency on Zoom’s QoE.
Limitations of this Study. However, our study is limited, as we had to limit
the number of participants (n=10) due to COVID-19 restrictions. As such, we
also restricted the number of scenarios to keep the individual study duration
to roughly 25 minutes. Additionally, we had to switch from synthetically gener-
ated videos (noise to maximize bandwidth utilization) that we used throughout
Section 4 to real video-conferences. This makes it difficult to compare the video-
flows’ demands from our synthetic evaluation to this user study as the bandwidth
demand varies with the compression rate (higher compression for actual webcam
video). In summary, our study should only be regarded as an initial step.

In the following, we introduce the design and stimuli of our study and which
metrics we are interested in. Subsequently, we present the results.

A.1 User Study Design

We perform a video conference where the subject interacts with an experiment
assistant via Zoom focusing on interactivity and understandability to rate the
quality and whether potentially degraded quality is acceptable when a concurrent
download is active. The assistant reads short paragraphs of texts and the subject
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https://doi.org/10.1109/PV.2013.6691448


shortly summarizes them once the paragraph ended. This way, we test whether
the video conference allowed for easy understanding but also represent the typical
condition where conference attendees interrupt each other unintentionally. After
5 repetitions of summarizing, the subject and assistant alternately count to 10
to get a feeling for the delay, as proposed by the ITU [4]. Lastly, the assistant
reads random numbers and the subject stops the assistant at a given number
(unknown to the assistant) for the same reasons.
Quality Rating. After every run, the subject rates the overall, audio, video, and
interactivity quality on a seven-point linear scale [5] (c.f., y-axis in Fig. 8). More-
over, the subject decides (yes/no) if communicating was challenging, whether the
connection was acceptable at all, whether the quality was acceptable if they were
downloading a file during a business or private call or when someone else was
downloading documents or watching movies in parallel.
Test Conditions. We test 3 different scenarios using our previously described
testbed; for all conditions, we shape the subject’s link to 0.5 Mbps, adjust the
min. RTTs to 50 ms and use a queue size of 10×BDP. The scenarios differ in
whether an extra flow competes on the downlink and whether the queue is man-
aged. In detail, in Scenario 1 (Tail-Drop) only Zoom is active using a tail-drop
queue. Scenario 2 (Tail-Drop + Flow) adds a TCP CUBIC flow on the downlink,
representing, e.g., a movie download. Scenario 3 (FQ CoDel + Flow) adopts the
TCP flow, but switches to the flow-queuing variant of CoDel.
Study Details. We perform a “within subject” lab study: each subject rates
every test condition selected from a latin square to randomize the order. Each
experiment takes about 5 min and is repeated for the 3 scenarios plus a training
phase at the start using Scenario 1. In total, the 4 experiments plus rating take
about 25 min. Although conducting studies with members familiar to the study
is discouraged [4], we stick to the same experiment assistant to reduce variations.
Subject Recruitment. Our subjects are 10 colleagues from our institute which
volunteered to take part and are strongly familiar with Zoom. We limited our
study to these participants to reduce contacts during the pandemic. As such we
were able to hold the conferences in the participant’s first language.

A.2 Results

Fig. 8a shows the mean opinion score and 95% confidence intervals of the quality
rating (distributions checked for normality via a Shapiro-Wilk test). The confi-
dence intervals are computed via the t-distribution due to our small sample size.
Further, Fig. 8b shows the distributions of “Yes” (positive, to the right) and
“No” (negative, to the left) answers for the different questions.

Generally looking at the plots we can see that the worst results stem from
using FQ CoDel, while using a tail-drop queue with no concurrent flow results in
the best quality ratings. For the overall quality of the video conference and the
video quality this difference is statistically significant as the confidence intervals
do not overlap. However, for the scenarios where Zoom competes with TCP flows,
the results are statistically insignificant and allow no statement. Similar, all audio
quality and interactivity votes allow no statistically significant statement.
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Flow-Queuing AQM induced QoE Changes. Hence, interpreting these re-
sults is complex. What can be said is that CoDel’s positive effect of reducing the
queuing delay was not perceived by the users. On the other hand, also the reduc-
tion in bandwidth did not yield any statistically significant quality reduction.
However, a trend against using FQ CoDel is visible, but it cannot be statistically
reasoned. Only following the trend, it might be not worth using FQ CoDel due
to its potentially worse QoE. Otherwise, only few users considered the connec-
tion unacceptable (c.f. Fig. 8b), surprisingly uncorrelated to whether FQ CoDel
was used or whether a concurrent flow was actually started. I.e., some users
considered our scenarios generally as unacceptable regardless of FQ CoDel.
Influence of Concurrent Downloads on Acceptability. Surprisingly, users
also consider the quality unacceptable when imagining a concurrent download of
documents in business or private conversations. We expected that users accept
deteriorations, as they would not pay attention to the video conference, but want
their download to complete. However, specifically in the business case, our users
did not. Also quality deteriorations induced by other users downloading movies
or documents were not seen more disturbing. I.e., independent of self-inflicted
or not, some users do not accept quality deteriorations at all, while others do.
Takeaway. Unfortunately, our study did not yield statistically conclusive results
with respect to how participants perceive the difference in Zoom quality between
using a tail-drop queue and FQ CoDel when a flow competes. Also regarding
acceptance, users did not see strong differences and either disliked the quality
regardless of possible concurrent downloads as reasons or just accepted it, dis-
agreeing on a generally applicable statement. Looking at the general trend of our
study, FQ CoDel could decrease QoE.
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